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INTERACTION OF SHOCK WAVES WITH A COMBINED DISCONTINUITY

IN TWO-PHASE MEDIA. 1. EQUILIBRIUM APPROXIMATION

UDC 532.529A. A. Zhilin and A. V. Fedorov

The problem of interaction of shock waves of various types (completely dispersed, frozen-dispersed,
dispersed-frozen, and frozen shock waves with a two-front configuration) with a motionless combined
discontinuity in a mixture of two condensed materials is considered. The mathematical description
is based on the equations of mechanics of heterogeneous media in a one-dimensional isothermal ap-
proximation with allowance for differences in velocities and pressures of the components. In the
equilibrium approximation in terms of velocities and pressures of the components, the wave config-
uration and flow parameters are determined in all equilibrium states behind the incident, transient,
and reflected shock waves.

The problem of interaction of shock waves (SW) with a combined discontinuity (CD) separating the mixture
with different volume concentrations of the components is of great theoretical and practical interest. Fedorov [1]
proposed a mathematical model for the description of the behavior of a mixture of two condensed materials in
the two-velocity, two-temperature approximation of mechanics of heterogeneous media with different pressures of
the components. The existence of two types of shock waves was established within the framework of one-velocity
continua: dispersed SW (with a monotonic velocity profile) and frozen SW (with a discontinuous velocity profile).
For a two-component mixture in the two-velocity approximation of mechanics of heterogeneous media with different
pressures of the components, it was shown [2, 3] that there can exist four types of shock waves: dispersed, frozen-
dispersed, dispersed-frozen, and frozen shock waves with a two-wave configuration. Stability of shock waves of
different types to finite and infinitesimal perturbations was studied in [4]. The mechanism of interaction of shock
waves of all types with a rigid boundary was studied analytically and numerically in [5, 6]. As a result, the
equilibrium parameters of the mixture established after the reflection of the incident SW from the rigid wall were
determined, and the possibility of a change in the SW type upon reflection was demonstrated.

In the present work, we study the process of interaction of the incident SW and CD for the case where the
relaxation times of velocities and pressures of the components of the mixture are close to zero (equilibrium flow)
and also for the general case of finite relaxation times.

Physicomathematical Formulation of the Problem. We consider a mixture of a liquid and solid
particles with an SW propagating from right to left with a velocity D. At a certain time, the SW reaches the CD
separating regions with different volume concentrations of particles and interacts with it. We have to determine the
flow pattern after interaction of the incident SW and CD.

For the mathematical description of this process in the one-dimensional isothermal approximation of me-
chanics of a heterogeneous mixture of condensed media with different pressures and velocities, we use the laws of
conservation of mass and momentum for each component of the mixture, which are supplemented by the equation
of m2 transfer and equations of state:

∂ρ1

∂t
+
∂ρ1u1

∂x
= 0,

∂ρ2

∂t
+
∂ρ2u2

∂x
= 0,

∂ρ1u1

∂t
+
∂ρ1u

2
1

∂x
= −m1

∂P1

∂x
+ FSt,

∂ρ2u2

∂t
+
∂ρ2u

2
2

∂x
= −m2

∂P2

∂x
− (P2 − P1)

∂m2

∂x
− FSt,

∂m2

∂t
+ u2

∂m2

∂x
= R, (1)

m1 = 1−m2, P1 = ρ1/m1 − 1, P2 = a2(ρ2/m2 − ρ̄).
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Fig. 1. Interaction of the incident SW1 and CD: reflection of SW2 (a) and reflection of RW (b).

Here ρi = miρii, ui, Pi, and mi are the mean density, velocity, pressure, and volume concentration of the ith
component of the mixture, FSt = m1ρ2(u2 − u1)/τSt is the Stokes force, τSt = 2ρ̄/(9µ1) is the time of the Stokes
relaxation of velocities, R = m1m2(P2 − P1)/τm2 is the function that describes the transfer process of the solid
phase, τm2 = 2ρ22,0a2r/(ρ11,0a

2
1) ≈ 2µ2 is the time of pressure relaxation of the components of the mixture, µi is

the dynamic viscosity of the ith component, ρii is the true density of the ith component, and ai and ρii,0 are the
velocity of sound and true density of the material of the ith component of the mixture. The subscripts 1 and 2 refer
to the parameters of the light component (carrier phase) and heavy component (discrete phase) of the mixture,
respectively.

In system (1), the velocities were normalized to a1, the densities to ρ11,0, the pressure to a2
1ρ11,0, the

time t to t0 = r/a1, µi to a1ρ11,0r, and the spatial variable x to the radius of solid particles r. Thus, at t = 0, the
dimensionless velocity of sound and the true density of the light component are equal to unity, and these parameters
for the heavy component are a = a2/a1 and ρ̄ = ρ22,0/ρ11,0, respectively.

The initial data for system (1) can be represented in the form

t = 0: ϕ = ϕ∗ for x > x0, ϕ = ϕ∗∗ for x < x0, (2)

where the vector of flow parameters in the initial equilibrium state is denoted as ϕ∗ on the right of the CD (it
describes the flow in the form of a steady SW of some type [3]) and as ϕ∗∗ on the left of the CD; x0 is the coordinate
of the CD boundary. We have to find a solution of system (1), (2) for t > 0.

Calculation of Flow Parameters in the Equilibrium Approximation. Interaction of the incident SW
and CD in the equilibrium approximation is described by the Riemann problem in a mixture of two compressible
gases. The wave pattern of interaction of the incident SW and CD is shown in Fig. 1.

Figure 1a corresponds to the case, where the incident SW1 (propagating with a velocity D) decomposes,
after interaction with the CD, into the reflected SW2 (Dr) and transient (refracted) SW3 (Dtr). The transient SW3
moves in the same direction as the incident SW1 with respect to the CD, and the reflected SW2 moves in the opposite
direction. Prior to interaction with the incident SW1, the quiescent CD is located at the point x0 = 0. The mixture
ahead of the front of the incident SW1 is in the equilibrium state; its parameters are denoted by the subscript 0. In
the region between the front of the incident SW1 and motionless boundary of the CD, the mixture is characterized
by equilibrium initial parameters marked by the superscript “∗”; the parameters of the mixture behind the CD are
denoted by the superscript “∗∗.” In this case, we assume that m∗∗10 < m∗10, i.e., ρ∗∗0 > ρ∗0 [since ρ0 = ρ̄+m10(1− ρ̄)].
An equilibrium state is formed behind SW1; its parameters are marked by the subscript “fin.” After interaction of
the incident SW1 and CD, the latter starts to move behind the transient SW3 with a velocity uCD. Its trajectory is
shown by the dashed curve in Fig. 1a. The reflected SW2 propagates over the mixture with parameters marked by
the subscript “fin”; new equilibrium parameters marked by the subscript and superscript “r” are established behind
its front. The transient SW moves over the mixture with parameters denoted by the superscript “∗∗”; equilibrium
parameters marked by the subscript “tr” are established behind its front.

Thus, based on the wave pattern proposed, we have to determine the velocity of the transient SW3, reflected
SW2 and CD, and also other flow parameters established after interaction of the incident SW1 and CD for given
initial parameters (velocity of the incident SW1 and initial volume concentrations ahead of the CD and behind it).
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Figure 1b corresponds to the case, where the incident SW1 decomposes, after interaction with the CD, into
the transient SW3 and a fan of rarefaction waves (RW) reflected from the CD boundary and moving in the opposite
direction. As is shown in [7], the fore front of the RW propagates with a velocity varying, generally speaking, from
equilibrium-frozen (Ce.f.) at the initial time to equilibrium (Ce) at large times; the rear front of the RW propagates
with a constant velocity corresponding to the velocity of sound of the light component. Here m∗∗10 > m∗10 and
ρ∗∗0 < ρ∗0.

We study the case shown in Fig. 1a, where the incident SW1, interacting with the CD, decomposes into two
shock waves (reflected and transient).

To solve this problem, we use the laws of conservation of mass and momentum on the incident SW1, reflected
SW2, and refracted SW3, the conditions on the CD before and after its interaction with the incident SW1, and
equations of state written for the corresponding equilibrium states.

The following conditions are imposed on the CD:
1) in the initial equilibrium state (before interaction with SW1), u∗0 = u∗∗0 = u0 = 0 and P ∗0 = P ∗∗0 = P0 = 0;
2) in the final equilibrium state (after interaction with SW1), utr = ur = uCD and Ptr = Pr = PCD.
The following conditions are imposed on the SW:
1) on the incident SW1,

ρ∗0(u∗0 −D) = ρfin(ufin −D), P ∗0 + ρ∗0(u∗0 −D)2 = Pfin + ρfin(ufin −D)2;

2) on the reflected SW2,

ρfin(ufin −Dr) = ρr(ur −Dr), Pfin + ρfin(ufin −Dr)2 = Pr + ρr(ur −Dr)2;

3) on the refracted (transient) SW3,

ρ∗∗0 (u∗∗0 −Dtr) = ρtr(utr −Dtr), P ∗∗0 + ρ∗∗0 (u∗∗0 −Dtr)2 = Ptr + ρtr(utr −Dtr)2.

Here P ∗ = (C∗e.f.)
2ρ + m∗2C − 1, P ∗∗ = (C∗∗e.f.)

2ρ + m∗∗2 C − 1, (C∗e.f.)
2 = ξ∗1 + a2ξ∗2 , m∗2 = 1 − m∗1,

m∗∗2 = 1 − m∗∗1 , m∗1 = (C + ρ(C∗e.f.)
2 −

√
(C + ρ(C∗e.f.)2)2 − 4Cρξ∗1 )/(2C), (C∗∗e.f.)

2 = ξ∗∗1 + a2ξ∗∗2 , and
m∗∗1 = (C + ρ(C∗∗e.f.)

2 −
√

(C + ρ(C∗∗e.f.)2)2 − 4Cρξ∗∗1 )/(2C).
We introduce the following notation: u∗0 − D = U∗0 , u∗∗0 − Dtr = U∗∗0 , ur − Dr = Ur, ufin − D = Ufin,

utr −Dtr = Utr, and ufin −Dr = U r
fin.

Since SW1 moves with a velocity D from right to left over the mixture with the parameters ρ∗0, U∗0 , m∗10,
and P ∗0 , the mixture behind the wave front acquires a new equilibrium state with the parameters ρfin, Ufin, m1,fin,
and Pfin, which are found from the conditions on the incident SW1. We have ρfin = ρ∗0U

∗
0 /Ufin from the law of

conservation of mass and Pfin = ρ∗0U
∗
0 (U∗0 − Ufin) from the law of conservation of momentum. Using the equation

of state Pfin = (C∗e.f.)
2ρfin + m∗2,finC − 1 and the expression for the volume concentration of the heavy component

obtained from the condition of equal pressures of the components in the final equilibrium state behind the incident
SW (P1,fin = P2,fin) in the form

m∗2,fin = [C − ρfin(C∗e.f.)
2 +

√
(C + ρfin(C∗e.f.)2)2 − 4Cρfinξ∗1 ]/(2C),

we find a cubic equation for determining Ufin:

(ρ∗0U
∗
0 )2U3

fin − ρ∗0U∗0U2
fin(2− C + 2ρ∗0(U∗0 )2)

+ Ufin[1− C + ρ∗0(U∗0 )2(2− C) + (ρ∗0U
∗
0C
∗
e.f.)

2 + (ρ∗0)2(U∗0 )4]

+ ρ∗0U
∗
0 (Cξ∗1 − (C∗e.f.)

2 − ρ∗0(U∗0 )2(C∗e.f.)
2) = 0.

This equation decomposes into two equations:

Ufin − U∗0 = 0, (ρ∗0U
∗
0 )2U2

fin − ρ∗0U∗0Ufin(2− C + ρ∗0(U∗0 )2) + 1− C + (ρ∗0C
∗
e.f.U

∗
0 )2 = 0.

Thus, the solutions have the following form:

Ufin = U∗0 , U±fin =
2− C + ρ∗0(U∗0 )2 ±

√
(C − ρ∗0(U∗0 )2)2 + 4ρ∗0(U∗0 )2(1− ρ∗0(C∗e.f.)2)

2ρ∗0U
∗
0

.

Based on the physical conditions of the problem, hereinafter we use the value Ufin = U−fin. Based on the
found value of Ufin, we determine ρfin and Pfin, and, then, the values of m2,fin and m1,fin. In what follows, the values
of ρfin, Ufin, m1,fin, and Pfin are assumed to be known.
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Fig. 2. Biquadratic function F (U0).

From the conditions on the reflected SW2, we find the dependences ρr and Pr on Ur and Dr; based on the
conditions on the transient SW3, we express ρtr and Ptr via Utr and Dtr. Finally, we obtain the following system
of equations:

Pr = Pfin + ρfinU
r
fin(U r

fin − Ur), Ptr = ρ∗∗0 U
∗∗
0 (U∗∗0 − Utr),

(3)
Ur +Dr = Utr +Dtr = uCD, Pr = Ptr = PCD.

This system is closed by equations of state.
We consider the second equation of system (3). Substituting Ptr from the equation of state into the second

equation of (3), we obtain a cubic equation for determining Utr

(ρ∗∗0 U
∗∗
0 )2U3

tr − ρ∗∗0 U∗∗0 U2
tr(2− C + 2ρ∗∗0 (U∗∗0 )2)

+Utr[1− C + ρ∗∗0 (U∗∗0 )2(2− C) + (ρ∗∗0 U
∗∗
0 C∗∗e.f.)

2 + (ρ∗∗0 )2(U∗∗0 )4]+ρ∗∗0 U
∗∗
0 (Cξ∗∗1 − (C∗∗e.f.)

2 − ρ∗∗0 (U∗∗0 )2(C∗∗e.f.)
2) = 0.

If we substitute U∗0 for U∗∗0 , ρ∗0 for ρ∗∗0 , and the subscript “fin” for “tr,” the polynomial in the left side of the last
equation will be similar to the polynomial in the left side of the equation for determining Ufin. Hence, the equation
under study also has three roots: Utr = U∗∗0 (which corresponds to the initial data of the problem) and

U±tr =
2− C + ρ∗∗0 (U∗∗0 )2 ±

√
(C − ρ∗∗0 (U∗∗0 )2)2 + 4ρ∗∗0 (U∗∗0 )2(1− ρ∗∗0 (C∗∗e.f.)2)

2ρ∗∗0 U
∗∗
0

. (4)

In what follows, we consider the value Utr = U−tr (by analogy with U−fin).
We study the radicand of equality (4), which may be represented in the form of the biquadratic equation

F (U∗∗0 ) = (ρ∗∗0 )2(U∗∗0 )4 − 2ρ∗∗0 (U∗∗0 )2(C − 2 + 2ρ∗∗0 (C∗∗e.f.)
2) + C2 = 0,

which has the solution

U∗∗0 = ±
√[

C − 2 + 2ρ∗∗0 (C∗∗e.f.)2 ±
√

(C − 2 + 2ρ∗∗0 (C∗∗e.f.)2)2 − C2
]
/ρ∗∗0 .

For m∗∗10 = 0, the internal radicand vanishes, and multiple real roots are obtained: U∗∗0 = ±
√
−C/ρ̄. For m∗∗10 = 1,

the internal radicand also vanishes, but we obtain two multiple imaginary roots U∗∗0 = ±i
√
|C|, since C < 0. For

other values of m∗∗10 ∈ (0, 1), the internal radicand becomes negative, since ρ∗∗0 (C∗∗e.f.)
2 = m∗∗10 + a2ρ̄m∗∗20 < a2ρ̄.

Hence, there are no real solutions.
Figure 2 shows the biquadratic function F (U0) for a mixture of water and quartz sand for different initial

volume concentrations of the mixture. As is shown in Fig. 2, there are three extreme points, which, for m∗∗10 ∈ [0; 0, 5)
correspond to two local minima for UI,II = ±

√
(C − 2 + 2ρ∗∗0 (C∗∗e.f.)2)/ρ∗∗0 and a maximum for UIII = 0. For

m∗∗10 = 0.5, the points of local minima and maximum converge into one point [twice degenerate point of the
curve F (U0)] UI = UII = UIII = 0, where a minimum is reached; for m∗∗10 ∈ (0.5; 1], there exists one real minimum
for U = 0. It should be noted that the minimum points UI and UII are shifted from ±

√
−C/ρ̄ to zero; the value of

F (U0) changes from zero to C2 for m∗∗10 ∈ [0; 0.5], and the position of the point U = 0 is constant, whereas the value
of F (U0) = C2 at this point depends only on the components that constitute the mixture examined. For example,
we have C2 = 522.1225 for a mixture of water and quartz sand.
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Fig. 3. Roots of Eq. (7) for D = −2.5 and m∗∗10 = 0.5.

Thus, Eq. (4) allows us to determine the relative velocity of the mixture behind the transient SW3 as a
function Utr = Utr(Dtr).

We derive an equation for Dtr. From the third equation of system (3), which expresses the equality of mass
velocities on the CD, we find the relative velocity of the mixture behind the reflected SW2:

Ur = Utr +Dtr −Dr. (5)

Using the first and second equations of system (3) and the condition of equal pressures on the CD, we obtain the
expression

Pfin + ρfinU
r
fin(U r

fin − Ur) = ρ∗∗0 U
∗∗
0 (U∗∗0 − Utr),

where U r
fin = ufin −Dr = Ufin −Dr −U∗0 , which allows us to express the velocity of the reflected SW2 as a function

Dr = Dr(Dtr, Utr(Dtr)) in the following form:

Dr = Ufin − U∗0 + [Pfin − ρ∗∗0 U∗∗0 (U∗∗0 − Utr)]/[ρfin(Ufin − U∗0 + U∗∗0 − Utr)]. (6)

We study the last equation of system (3) for determining the velocity of the transient (refracted) SW3.
Substituting Ptr and Pr from the equation of state and performing a number of simple transformations, we obtain
an equation for ρtr and ρr:

Cρ2
trξ
∗∗
1 ξ∗∗2 +Cρ2

r ξ
∗
1ξ
∗
2+ρtrρ

2
r (C∗e.f.)

2(ξ∗1ξ
∗∗
2 − ξ∗∗1 ξ∗2)− ρ2

trρr(C∗∗e.f.)
2(ξ∗1ξ

∗∗
2 − ξ∗∗1 ξ∗2)− Cρtrρr(ξ∗1ξ

∗∗
2 +ξ∗∗1 ξ∗2) = 0. (7)

Equation (7) is a function of one unknown — velocity of the transient SW3 Dtr, since ρtr and ρr are expressed
through the parameters Utr, Ur, U r

fin, and U∗∗0 , which, in turn, are functions of Dtr. The roots of Eq. (7) were found
graphically. Figure 3 shows the behavior of the roots of Eq. (7) as a function of the velocity of the refracted SW3
for different initial volume concentrations of the light component ahead of the CD boundary m∗10 for D = −2.5
and m∗∗10 = 0.5. It follows from Fig. 3 that, for all m∗10 ∈ (0, 1), there are three constant roots corresponding
to the state at rest (Dtr = 0) and equilibrium velocity of sound (Dtr = ±C∗∗e ). Two solutions (curves 1 and 2)
exist for all values of m∗10 = 1–0. They decrease as the velocity of the transient wave changes from negative to
positive values. The behavior of the remaining roots in Fig. 3 is shown by curve 3 (curve with a closed section).
The vertical dashed line shows the velocity of the incident SW. The existence of a point m∗ should also be noted;
this point separates the region of unstable flow (located below the point m∗), where the condition of the Zemplén
theorem is not satisfied. This value was determined in [3] by constructing a chart of solutions. Based on the above
considerations, we formulate the following statement.

Statement 1. Depending on the value of m∗10, the region of existence of the solution of the problem of

incidence of an SW onto the CD can be divided into three regions (see Fig. 3).
In region I, the volume concentrations of the first phase ahead of the CD are m∗10 ∈ (0,m∗), which corresponds

to the case of a rarefaction wave incident onto the CD boundary. For m∗10 = m∗, there exist three roots: Dtr = 0
and Dtr = ±C∗∗e (see Fig. 3). It should be noted that the value of m∗ depends only on the velocity of the wave

interacting with the CD.
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TABLE 1
Equilibrium Parameters of the Mixture (D = −1.5)

m∗10 Dtr Dr uCD ufin PCD Pfin ρfin ρtr ρr

m∗∗10 = 0.1

0.2 −1.879 1.512 −0.065 −0.075 0.303 0.263 2.443 2.574 2.459
0.3 −2.120 1.460 −0.167 −0.213 0.880 0.688 2.511 2.698 2.582
0.4 −2.282 1.351 −0.247 −0.338 1.401 1.008 2.568 2.787 2.714
0.5 −2.395 1.210 −0.310 −0.452 1.848 1.238 2.611 2.855 2.853
0.6 −2.475 1.048 −0.359 −0.555 2.209 1.382 2.635 2.907 3.002
0.7 −2.527 0.877 −0.394 −0.648 2.472 1.4524 2.631 2.949 3.158
0.8 −2.555 0.703 −0.412 −0.728 2.618 1.4520 2.584 2.963 3.314
0.9 −2.557 0.541 −0.414 −0.792 2.628 1.384 2.468 2.965 3.446

m∗∗10 = 0.5

0.2 −1.116 RW −0.094 −0.075 0.192 0.263 2.443 1.994 2.413
0.3 −1.270 RW −0.244 −0.213 0.566 0.688 2.511 2.259 2.462
0.4 −1.397 RW −0.360 −0.338 0.919 1.008 2.568 2.459 2.531
0.5 −1.500 — −0.452 −0.452 1.238 1.238 2.611 2.611 2.611
0.6 −1.581 0.884 −0.522 −0.555 1.507 1.382 2.635 2.725 2.697
0.7 −1.641 0.716 −0.574 −0.648 1.718 1.4524 2.631 2.806 2.782
0.8 −1.678 0.552 −0.606 −0.728 1.855 1.4520 2.584 2.856 2.856
0.9 −1.691 0.404 −0.616 −0.792 1.902 1.384 2.468 2.872 2.893

In region II, the volume concentration of the first phase is m∗10 ∈ (m∗,m∗∗10). Here, the incident SW1

propagates over a denser mixture and enters a less dense mixture at the CD boundary (see Fig. 1b). For m∗10 = m∗∗10,

there exist four roots: Dtr = 0, Dtr = ±C∗∗e , and Dtr = D. The latter root corresponds to the case, where there

is no discontinuity in the volume concentration on the CD, and the incident SW1 passes through the CD without

changes.

Region III corresponds to the values m∗10 ∈ (m∗∗10, 1). In this case, the incident SW1 propagates over a

mixture with a lower density than behind the CD (see Fig. 1a).
As the velocity of the incident SW decreases, region I increases: we have m∗ = 0.149 for D = −1.5,

m∗ = 0.058 for D = −2, m∗ = 0.020 for D = −2.5, and m∗ = 0 for D = −3; region I is absent for D < −3. The
width of regions II and III depends only on the volume concentration of the light (heavy) component behind the
CD.

Among the solutions obtained, we chose solutions that satisfied the following conditions: first, SW3 should be
stable, hence, its velocity should be greater than the equilibrium velocity of sound, i.e., Dtr /∈ [−C∗∗e , C∗∗e ]; second,
the direction of the transient SW3 should coincide with the direction of the incident SW1, i.e., sign (Dtr) = sign (D).
Thus, among the set of solutions of the problem posed, only the solutions in the region of supersonic flows in terms
of the equilibrium velocity of sound satisfy physical requirements. For the case presented in Fig. 3, this region can
contain two to five roots of Eq. (7), depending on the value of m∗10.

The results of numerical calculations in an unsteady approximation showed that only one root is obtained
in practice, which is further used as the solution (curve 2 in Fig. 3). Using the solution for Dtr, we determine the
remaining equilibrium flow parameters.

Tables 1–3 contain the velocities of the transient and reflected SW, velocity of the CD, velocities of the
mixture behind the incident SW1, pressure on the CD and in the final equilibrium state behind the incident
SW1, and densities behind the incident, transient, and reflected shock waves for various differences in volume
concentrations at the CD boundary and velocities of the incident shock wave. An analysis of the data in Tables 1–3
allows us to make the following conclusions. The velocity of the transient SW3 Dtr increases with increasing velocity
of the incident SW1 and initial volume concentration of solid particles ahead of the CD boundary and decreases
with increasing initial volume concentration of the light component. As it could be expected, the velocity of the
transient SW3 is smaller than the velocity of the incident shock wave if the incident SW1 interacts with a less dense
medium (m∗10 < m∗∗10). The velocity of the reflected SW2 decreases with decreasing initial volume concentration of
particles in the mixture; the degree of deceleration increases with increasing velocity of the incident SW1. It should
be noted that, if a weaker SW (D = −1.5) is incident onto the CD boundary, the reflected SW2 always moves in
the opposite direction. As the velocity of the incident SW1 increases (D = −2.5 and −3.3), in the case of high
volume concentrations of the light component ahead of the CD boundary, the reflected SW2 is entrained by the flow
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TABLE 2
Equilibrium Parameters of the Mixture (D = −2.5)

m∗10 Dtr Dr uCD ufin PCD Pfin ρfin ρtr ρr

m∗∗10 = 0.1

0.1 −2.500 — −0.375 −0.375 2.332 2.332 2.924 2.924 2.924
0.2 −2.831 1.995 −0.631 −0.685 4.438 3.974 3.196 3.197 3.262
0.3 −3.017 1.707 −0.810 −0.928 6.072 5.002 3.428 3.397 3.589
0.4 −3.146 1.430 −0.949 −1.137 7.428 5.659 3.651 3.559 3.940
0.5 −3.246 1.151 −1.063 −1.325 8.573 6.048 3.885 3.695 4.345
0.6 −3.325 0.859 −1.157 −1.499 9.563 6.222 4.147 3.812 4.849
0.7 −3.389 0.542 −1.236 −1.662 10.408 6.213 4.462 3.911 5.533
0.8 −3.440 0.188 −1.299 −1.817 11.101 6.042 4.868 3.993 6.565
0.9 −3.475 −0.213 −1.344 −1.963 11.606 5.719 5.428 4.052 8.402

m∗∗10 = 0.5

0.1 −1.554 RW −0.499 −0.375 1.414 2.332 2.924 2.687 2.789
0.2 −1.929 RW −0.820 −0.685 2.887 3.974 3.196 3.176 3.032
0.3 −2.176 RW −1.035 −0.928 4.108 5.002 3.428 3.480 3.286
0.4 −2.358 RW −1.196 −1.137 5.148 5.659 3.651 3.705 3.563
0.5 −2.500 — −1.325 −1.325 6.048 6.048 3.885 3.885 3.885
0.6 −2.614 0.647 −1.431 −1.499 6.828 6.222 4.147 4.032 4.283
0.7 −2.707 0.325 −1.518 −1.662 7.497 6.213 4.462 4.155 4.813
0.8 −2.779 −0.029 −1.587 −1.817 8.047 6.042 4.868 4.253 5.589
0.9 −2.831 −0.423 −1.636 −1.963 8.454 5.719 5.428 4.324 6.892

TABLE 3
Equilibrium Parameters of the Mixture (D = −3.3)

m∗10 Dtr Dr uCD ufin PCD Pfin ρfin ρtr ρr

m∗∗10 = 0.1

0.1 −3.300 — −1.128 −1.128 9.247 9.247 3.775 3.775 3.775
0.2 −3.494 1.433 −1.367 −1.439 11.872 11.020 4.115 4.083 4.221
0.3 −3.626 1.137 −1.538 −1.687 13.856 11.996 4.409 4.314 4.655
0.4 −3.729 0.859 −1.672 −1.903 15.495 12.497 4.701 4.505 5.129
0.5 −3.814 0.580 −1.785 −2.101 16.917 12.654 5.023 4.670 5.696
0.6 −3.888 0.285 −1.883 −2.289 18.192 12.537 5.416 4.818 6.430
0.7 −3.954 −0.044 −1.971 −2.470 19.367 12.183 5.940 4.954 7.478
0.8 −4.015 −0.429 −2.052 −2.647 20.480 11.618 6.721 5.083 9.182
0.9 −4.073 −0.904 −2.130 −2.823 21.557 10.852 8.053 5.208 12.605

m∗∗10 = 0.5

0.1 −2.569 RW −1.389 −1.128 6.511 9.247 3.775 3.973 3.450
0.2 −2.851 RW −1.655 −1.439 8.611 11.020 4.115 4.352 3.812
0.3 −3.040 RW −1.840 −1.687 10.207 11.996 4.409 4.623 4.168
0.4 −3.184 RW −1.983 −1.903 11.522 12.497 4.701 4.840 4.559
0.5 −3.300 — −2.101 −2.101 12.654 12.654 5.023 5.023 5.023
0.6 −3.398 0.089 −2.202 −2.289 13.654 12.537 5.416 5.183 5.621
0.7 −3.483 −0.248 −2.222 −2.470 14.556 12.183 5.940 5.326 6.463
0.8 −3.559 −0.638 −2.368 −2.647 15.380 11.618 6.721 5.456 7.804
0.9 −3.626 −1.114 −2.439 −2.823 16.136 10.852 8.053 5.574 10.386
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Fig. 4. Characteristic velocities of the mixture.

formed behind the incident SW1. Thus, with respect to a motionless observer, the reflected SW2 can move in the
same direction as the transient SW3 but with a lower velocity (see Tables 1–3). The velocity of the CD boundary
increases both with increasing velocity of the incident SW1 and with increasing initial volume concentrations of the
light component ahead of and behind the CD boundary. The pressure on the CD increases with increasing m∗10,
m∗∗10, and D; if m∗10 > m∗∗10, then PCD is higher than the pressure established behind the incident SW1; otherwise,
PCD < Pfin, and the pressure in the reflected wave decreases (a flow with a rarefaction wave is formed). The
behavior of the density of the mixture is similar, i.e., for m∗10 > m∗∗10, the density behind the refracted and reflected
shock waves is greater than the density behind the incident SW1; for m∗10 < m∗∗10, ρfin is always greater than ρr,
and ρtr may be either greater or smaller than ρfin, depending on the velocity of the incident SW1 and the value
of m∗10.

Conditions of Flow Stability. Figure 4 shows the characteristic velocities of the mixture in the case of
incidence of SW1 propagating with a velocity D = −2.5 over the mixture versus the volume concentration. The
volume concentrations of the components behind the CD are identical (m∗∗10 = m∗∗20 = 0.5). The characteristic
velocities are the velocity of the incident SW1 (solid vertical curve |D|), velocity of the refracted SW3 (dashed
curve |Dtr|), velocity of the reflected SW2 (dot-and-dashed curve Dr), mass velocity of the mixture behind the
incident SW1 in the SW-fixed coordinate system (thin dotted curve Ufin = ufin −D), mass velocity of the mixture
behind the refracted shock wave in the relative coordinate system (thin dashed curve Utr), relative equilibrium
velocity ahead of the reflected SW (dotted curve |U r

fin|), relative equilibrium velocity behind the reflected SW (thin
dot-and-dashed curve |Ur|), and equilibrium velocities of sound (thin solid curves C∗e,0, C∗∗e,0, Ce,fin, Ce,r, and Ce,tr)
in the initial states ahead of and behind the CD and in the states behind the incident, reflected, and refracted SW.

The equilibrium velocity of sound is calculated by the formula

C2
e =

ξ1
m1

m1C − ρξ1
m2

1C − ρξ1
, m1 = me

1(ρ),

where C = 1 − a2ρ̄; the values of C∗e,0, C∗∗e,0, Ce,fin, Ce,tr, and Ce,r are determined by substituting equilibrium
parameters of the mixture for the corresponding equilibrium states ahead of and behind the CD and behind the
incident, transient, and reflected shock waves.

According to the Zemplén theorem, two conditions should be satisfied in the case of a steady flow: 1) the
relative velocity of the incident SW is greater than the equilibrium velocity of sound in the mixture ahead of the SW
front; 2) the relative velocity of the flow behind the front of the incident SW is smaller than the equilibrium velocity
of sound in the final state. Thus, the incident SW1 is stable for |D| > C∗e,0 and |ufin −D| < Ce,fin, the transient
SW3 is stable for |Dtr| > C∗∗e,0 and |utr −Dtr| < Ce,tr, and the reflected SW2 is stable for |ufin −Dr| > Ce,fin and
|ur −Dr| < Ce,r. It follows from Fig. 4 that the incident SW1 propagates steadily over the mixture for m∗10 ∈ (m∗, 1),
the transient SW3 is stable on the same interval as the incident SW1, and the reflected SW2 is stable on the interval
m∗10 ∈ (m∗∗10, 1). For the remaining values of m∗10, the condition of the Zemplén theorem is not satisfied; therefore,
the flow is unstable. From the above analysis, there follows

Statement 2. For m∗10 ∈ (m∗∗10, 1), the incident, transient, and reflected shock waves are stable (see Fig. 1a).
For m∗10 ∈ (m∗,m∗∗10), the incident and transient shock waves are stable, and the RW is reflected from the

CD (see Fig. 1b).
For m∗10 ∈ (0,m∗), the wave pattern with incident, transient, and reflected rarefaction waves is formed.
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TABLE 4

Equilibrium Parameters of the Mixture behind the Incident and Reflected SW
for D = −2.5 (rigid wall)

m∗10 ufin Pfin Dr Pr kCD/kW

0.1 −0.375 2.332 2.622 5.622 0
0.2 −0.685 3.974 2.446 10.828 0.0677
0.3 −0.928 5.002 2.271 15.186 0.105
0.4 −1.138 5.659 2.095 19.084 0.132
0.5 −1.326 6.048 1.909 22.700 0.152
0.6 −1.499 6.222 1.704 26.135 0.168
0.7 −1.662 6.213 1.470 29.449 0.181
0.8 −1.817 6.042 1.191 32.655 0.190
0.9 −1.964 5.719 0.846 35.662 0.197

We consider the limiting case, where there is no difference in volume concentrations at the CD boundary, i.e.,
m∗10 = m∗∗10. This case corresponds to SW propagation over a two-component mixture. The velocity of the transient
SW is equal to the velocity of the incident SW (Dtr = D), and the velocity of the reflected SW is determined as
Dr = ur − Ur. The CD velocity is equal to the mass velocity of the mixture behind the incident SW (uCD = ufin).
In this case, the equilibrium parameters of the mixture are PCD = Pfin, ρr = ρtr = ρfin, U r

fin = Ur = −Ce,fin, and
Utr = Ufin. The values of parameters corresponding to this case are italicized in Tables 1–3.

We compare the results obtained with the data for the limiting case, where an absolutely impermeable body
is located behind the CD boundary, i.e., the incident SW1 interacts with a rigid wall. The problem of SW interaction
with a rigid wall in the equilibrium approximation was studied in [5].

Table 4 shows the equilibrium parameters of the mixture behind the incident SW1 and the parameters
established after SW interaction with a rigid wall for D = −2.5 and various m∗10. It follows from Table 4 that the
velocity Dr of the shock wave reflected from the rigid wall is greater than the velocity of the shock wave reflected
from the CD boundary (see Table 2). Note, in the case examined, it is not possible to change the direction of motion
of SW2 reflected from the rigid boundary. Table 4 contains also the attenuation coefficients for SW2 reflected from
the CD (kCD/kW ), which is the ratio of the pressure increment due to interaction of the incident SW1 and CD
behind which we have m∗∗10 = 0.1 (PCD − Pfin) to the pressure increment due to SW interaction with the rigid
wall (Pr − Pfin). The coefficient kCD/kW increases from zero in the case of the absence of the difference in volume
concentrations on the CD (∆m = 0) to 0.197 for ∆m = 0.8.

Asymptotic Solutions. We study the limiting solutions of the problem posed, when the volume concen-
trations of the components of the mixture tend to zero and unity. Three variants are possible: 1) the incident SW1
propagates over a two-component mixture and interacts with a homogeneous material; 2) SW1 moves in a pure
material and interacts with a two-component mixture; 3) SW1 propagates over a pure one-component material and
interacts with a homogeneous material.

We consider the first case, where the incident SW1 propagates over a two-component mixture and interacts
with the CD with a homogeneous material behind. The equation of state for the homogeneous material behind the
CD boundary is P ∗∗ = (a∗∗)2(ρ − ρ∗∗0 ), where a∗∗ and ρ∗∗0 are the dimensionless velocity of sound and density in
the homogeneous material. This equation of state is used in solving system (3). The expressions for the parameters
of the mixture are written as follows:

— Utr = −(a∗∗)2/Dtr for velocity of the transient SW;
— Ur = (a∗∗)2/U∗∗0 +Dtr −Dr for velocity of the mixture behind the reflected SW;
— Dr = Ufin−U∗0 + {Pfin − ρ∗∗0 [D2

tr − (a∗∗)2]}/[ρfin(Ufin−U∗0 − Dtr−Utr)] for velocity of the reflected SW.
The condition of equal pressures on the CD yields the following equation for determining the velocity of the

transient SW Dtr:

[1 + ρ∗∗0 (D2
tr − (a∗∗)2)]2 − [1 + ρ∗∗0 (D2

tr − (a∗∗)2)][C + ρr(C∗e.f.)
2] + Cρrξ

∗
1 = 0.

Here ρr = ρfin(Ufin − U∗0 −Dr)/(Dtr −Dr + Utr). Figure 5 shows the behavior of the roots of this equation
(curves 1–5) versus the velocity of the transient SW Dtr for the velocity of the incident SW D = −2.5. The
velocity of sound and the true density for the pure material are a∗∗ = 3000 m/sec and ρ∗∗ = 1825 kg/m3 (in the
dimensionless form, a∗∗ = 2 and ρ∗∗ = 1.825). There are solutions corresponding to the state at rest (Dtr = 0) and
the velocity of sound in the pure material behind the CD (Dtr = ±a∗∗); two of them are not plotted in Fig. 5. The
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Fig. 5. Velocities of the SW passing from the mixture to the homogeneous material.

TABLE 5
Velocities of the SW Passing from the Pure Material into the Mixture

Dtr

m∗∗10 = 0.3 m∗∗10 = 0.5 m∗∗10 = 0.7

Equation (8) Equation (7) Equation (8) Equation (7) Equation (8) Equation (7)

DI
tr −6.345 −6.124

−6.342
−5.408 −5.006

−5.404
−4.340 −3.771

−4.335

DII
tr −3.129 −3.107

−3.129
−2.857 −2.831

−2.857
−2.660 −2.630

−2.660

DIII
tr −2.709 −2.754

−2.710
−2.552 −2.593

−2.553
−2.462 −2.502

−2.463

DIV
tr −1.187 −1.187 −1.026 −1.026 −0.969 −0.969

DV
tr 1.187 1.187 1.026 1.026 0.969 0.969

DVI
tr 3.902 4.264

3.906
6.411 8.848

6.428
9.972 —

Note. In columns 3, 5, and 7, the first and second values were obtained for m∗10 = 0.9 and 0.999, respectively.

horizontal dashed lines in Fig. 5 show the boundaries of regions I–III (see Statement 1). Note that the position of
the upper boundary corresponds to the condition of equal densities in the pure material and the mixture (ρ∗∗ = ρ∗0).
The root obtained in numerical calculations of the unsteady problem is shown by curve 3.

We consider now the second limiting case, where the shock wave propagates over a pure one-component
substance and interacts with a mixture of two condensed materials. We use the equation of state for the pure
material in the form P ∗ = (a∗)2(ρ − ρ∗0), where a∗ and ρ∗0 are dimensionless velocity of sound and density in the
homogeneous material. In this case, the flow velocity behind the incident SW is determined as Ufin = (a∗)2/U∗0 ,
and the expressions for density and pressure have the form ρfin = (U∗0 )2ρ∗0/(a

∗)2 and Pfin = ρ∗0((U∗0 )2 − (a∗)2),
respectively. The velocity of the mixture behind the transient SW3 is determined from Eq. (4), that behind the
reflected SW2 from Eq. (5), and the velocity of the reflected SW2 from Eq. (6). The fourth equation of system (3)
used to determine the velocity of the transient SW Dtr is written as

[1 + (a∗)2(ρr − ρ∗0)]2Utr − [1 + (a∗)2(ρr − ρ∗0)][CUtr + ρ∗∗0 U
∗∗
0 (C∗∗e.f.)

2] + Cρ∗∗0 U
∗∗
0 ξ∗∗1 = 0, (8)

where ρr = (ρ∗0U
∗
0 /(a

∗)2)((a∗)2 −DrU
∗
0 − (U∗0 )2)/(Utr +Dtr −Dr); Utr is determined from Eq. (4).

The solutions of Eq. (8) corresponding to the case of a pure liquid present ahead of the CD (a∗ = 1 and
ρ∗∗0 = 1) can be obtained from Eq. (7) considered above, as m∗10 → 1. The results of the numerical solution of
Eq. (7) (in determining the roots of the equation for Dtr, Dr, Ur, Utr, uCD, ufin, PCD, Pfin, ρfin, ρtr, and ρr) obtained
for m∗10 = 1 − ε differ insignificantly from the results of the solution of Eq. (8). In particular, for D = −2.5 and
m∗∗10 = 0.3, 0.5, and 0.7, we found six roots (I–VI) of Eq. (8) within the range of velocities of the transient SW
from −10 to 10 (Table 5). For each value of m∗∗10, Table 5 also gives solutions obtained from Eq. (7) for m∗10 = 0.9
and 0.999. It follows from Table 5 that the roots DIV

tr and DV
tr correspond to the values −C∗∗e and C∗∗e (velocity
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of sound in the mixture behind the CD). With increasing m∗10, the solution obtained from Eq. (7) approaches the
exact solution obtained from Eq. (8). In numerical calculations of the unsteady problem, we obtain the root DII

tr.
Variation of the roots Dtr within the interval m∗10 = 0.9–0.999 for the general solution of (7) with m∗∗10 = 0.5 is
plotted in Fig. 3. Note, in the example considered, the pure material has always a lower density than the mixture;
therefore, the wave pattern shown in Fig. 1a is always observed.

We study the third case, where we have two pure materials separated by the CD. For definiteness, we
assume that m∗∗10 → 0 and m∗10 → 1. Fur pure materials, we use the equations of state of the form Pi = a2

i (ρi−ρi0),
where the subscripts i = 1 and 2 refer to materials on the right of the CD (liquid phase) and on the left of it
(solid phase). The equations were normalized to the values of parameters of the liquid phase. An SW moves over
material 1 with a velocity D, and a state with the following gas-dynamic parameters is established behind the SW
front: Ufin = 1/U10, ρfin = U2

10, and Pfin = U2
10 − 1. From the conditions on the transient SW, we determine the

parameters Utr = a2/U20, ρtr = ρ̄U2
20/a

2, and Ptr = ρ̄(U2
20 − a2). From the conditions on the reflected SW, we have

Ur = 1/U r
fin, ρr = U2

10(U r
fin)2, and Pr = U2

10(U r
fin)2− 1. Using the conditions on the CD after its interaction with the

incident SW, we obtain two expressions: in the case of equal pressures on the CD, the velocity of the reflected SW
Dr = Dr(U20(Dtr)) is written as Dr = Ufin − U10 ∓

√
ρ̄(U2

20 − a2) + 1/U10, and in the case of equal mass velocities
on the CD, the velocity of the transient SW Dtr is determined from the relation Utr +Dtr = Ur +Dr. Substituting
the previously obtained expressions for Utr, Ur, and Dr, which depend on Dtr only, we obtain a transcendental
equation, which has four real roots for an SW propagating with a velocity D = −2.5: −7.671, −3.715, −3.000, and
3.000. The absolute value of two last solutions corresponds to the velocity of sound in the solid material behind the
CD. Numerical experiments showed that the second root is actually obtained. Thus, the following parameters are
established when the SW passes from the liquid to the solid material: Dtr = −3.715, Dr = −0.618, Ufin = 0.400,
Utr = 2.422, Ur = −0.675, ρfin = 6.250, ρtr = 4.064, ρr = 13.727, Pfin = 5.250, PCD = 12.727, and uCD = −1.292.
These results coincide with those obtained by solving Eq. (7) for m∗∗10 = 0.0001 and m∗10 = 0.9999.

Conclusions. Within the framework of the mathematical model of the equilibrium approximation of me-
chanics of heterogeneous media for a mixture of two materials, the problem of interaction of an SW and a CD
separating two two-component mixtures with different volume concentrations of heavy particles is considered. In
particular,

— an asymptotic solution (in terms of relaxation times of velocities and pressures tending to zero) is obtained,
which allows one to determine the wave pattern and flow parameters of the mixture, which are established after
SW interaction with the CD;

— a chart of flows of the mixture is constructed, which includes three regions with different flow types;
— the possibility of using the results obtained for predicting the behavior of shock waves passing from a

homogeneous material into a mixture or from a mixture into a homogeneous material is demonstrated; i.e., an
asymptotic flow pattern is obtained for the volume concentration of one component tending to zero or unity.
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